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a b s t r a c t

A new cell-area equidistribution method for two-dimensional grid adaptation, based on
Monge–Kantorovich optimization (or Monge–Kantorovich optimal transport), is presented.
The method is based on a rigorous variational principle, in which the L2 norm of the grid
displacement is minimized, constrained locally to produce a prescribed positive-definite
cell volume distribution. The procedure involves solving the Monge–Ampère equation: A
single, nonlinear, elliptic scalar equation with no free parameters, and with proved exis-
tence and uniqueness theorems. We show that, for sufficiently small grid displacement,
this method also minimizes the mean grid-cell distortion, measured by the trace of the
metric tensor. We solve the Monge–Ampère equation numerically with a Jacobian-Free
Newton–Krylov method. The ellipticity property of the Monge–Ampère equation allows
multigrid preconditioning techniques to be used effectively, delivering a scalable algorithm
under grid refinement. Several challenging test cases demonstrate that this method pro-
duces optimal grids in which the constraint is satisfied numerically to truncation error.
We also compare this method to the well known deformation method [G. Liao, D. Ander-
son, Appl. Anal. 44 (1992) 285]. We show that the new method achieves the desired equi-
distributed grid using comparable computational time, but with considerably better grid
quality than the deformation method.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Equidistribution has traditionally been a fundamental guiding principle in grid generation, as is evidenced by the ample
literature on the subject (see e.g. [1–4] and references therein). The problem is very simply posed: Generate a grid that equi-
distributes a given quantity along an arc (1D), a surface (2D), or a volume (3D). (Hereafter, we will refer to equidistribution
with respect to volumes for arbitrary dimensionality.) The concept is most attractive due to its conceptual simplicity. Fur-
thermore, in the context of error equidistribution, a rigorous connection exists between error equidistribution and minimi-
zation of total error [5,6].

In one dimension, equidistribution determines the grid uniquely [1,2,7,8]. This follows because, in 1D, only one unknown
exists per cell, and it can be determined uniquely by specifying the Jacobian of the transformation at each cell. However, in
two or more dimensions, equidistribution itself is not sufficient to determine the grid uniquely. There are many possible
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grids that satisfy a given equidistribution principle, and therefore a possibility arises to select an optimal grid in some rea-
sonable sense.

Historically, many approaches have been developed to determine good quality grids in two and higher dimensions. Var-
iational methods have received a great deal of attention, as they provide a solid mathematical foundation, leading to Euler–
Lagrange equations that govern the generation of the grid. There are several very good reviews on the subject [1,2,7,8]. Pio-
neering work by Winslow [9] used the ‘‘smoothness” integral (a measure of the trace of the metric tensor) to determine a set
of Laplace equations that govern the generation of the grid (equipotential method). This method was very successful in
allowing the modeler to generate grids for complicated boundaries. In a later development [10], Winslow proposed the var-
iable diffusion method, in order to have control of the properties of the grid within the domain. Brackbill and Saltzman [11]
used a cost function consisting of a combination of smoothness, orthogonality, and volume variation integrals to define a grid
generation equation that incorporates properties of each. In this formulation, a term related to equidistribution is introduced
by the volume variation integral. However, local equidistribution was not achieved due to competition among the different
cost functions. Dvinsky [12] pioneered the use of harmonic maps for grid generation, and they have since been explored by a
number of authors [4,13–15]. Harmonic maps can also be derived from variational principles, and they are very attractive
because, in 2D under certain conditions, the existence of a solution is guaranteed [16,17]. However, they have important
drawbacks, as we outline in the next paragraph. More recently, Huang [18] revisited the issue of variational equidistribution
by providing rigorous integral measures of isotropy (or smoothness) and uniformity (or equidistribution). Again, equidistri-
bution appears as a fundamental ingredient of the grid generation strategy.

Despite the attractiveness of these variational approaches – their mathematical soundness and the reasonable quality of the
resulting grids – they suffer from various drawbacks. In particular, some require user-provided parameters to decide the rel-
ative contributions of the globally averaged terms in the cost function, and, when these parameters are chosen poorly, this may
lead to mathematically ill-posed problems [19]. In addition, they result in as many Euler–Lagrange equations as dimensions
considered, and these are strongly coupled and very nonlinear. They are therefore difficult to solve numerically (although, in
the context of harmonic functionals, there has been recent progress employing state-of-the-art nonlinear algorithms [20]). The
major disadvantage of some of these approaches is the following: Because the global grid property integrals compete against
each other, the grid never truly satisfies any constraint, including equidistribution, to any predictable accuracy.

To resolve some of these issues, elliptic grid generation methods were first proposed by Thompson et al. [21], which
evolved from the earlier work by Winslow [9]. In these approaches, non-homogeneous terms are added to Winslow’s equi-
potential method. When properly specified, such terms allow good control of the properties of the grid. In [22], the source
terms are found from a least squares (variational) fit of the inverse Jacobian matrix of the transformation to a target matrix
with the desired properties. In Refs. [3,23], evidence that an elliptic approach can be made equivalent to an equidistribution
principle by a proper choice of the non-homogeneous terms is presented. The attractiveness of these methods is that the
equations remain essentially elliptic, and are therefore fairly tractable algorithmically. However, they still require as many
coupled, nonlinear elliptic equations as the dimensionality of the problem, there is no rigorous existence and uniqueness
theory, and for the most part they lack the mathematical soundness of variational principles.

Several authors have attempted to generalize the concept of grid equidistribution directly to multiple dimensions. One
approach is to consider equidistribution along one-dimensional arcs in the multi-dimensional domain [3,24,25]. This method
has the advantage that the task of multidimensional grid generation may be decomposed in a series of 1D equidistribution
steps along coordinate arcs [3,26,27]. However, it has been shown [3,24] that the concept of arc equidistribution can only be
satisfied locally in the domain, not globally, and that it generates fairly poor-quality grids (and may even fold the grid [24]).

The case for the need of cell-volume equidistribution to fix such smoothness problems has been made by various authors
[28,23]. As we have argued earlier, in dimensions greater than unity equidistribution does not guarantee a unique solution.
This implies that there is room for grid optimization. Recently, Kania [23] derived a set of non-homogeneous terms for
Thompson’s method that achieves volume equidistribution, and demonstrated that the generated grids are of good quality
(although no a posteriori measure is given of how accurate the equidistribution principle is satisfied by the generated grids).
Liao and Anderson [29] proposed an ODE-based equidistribution approach based on the work of Moser [30,31]. By suitably
defining a flow velocity and an accompanying set of ODEs, it was demonstrated that the approach leads to an equidistributed
grid. Then, based on ODE theory, they demonstrate that the solution obtained by the procedure exists and is unique, once the
flow is prescribed. However, there is great latitude in choosing the flow, and for a fixed flow there is no evidence that the
resulting grid is optimal in any sense.

In this paper, we propose a new approach for cell-volume equidistribution, based on Monge–Kantorovich optimization
[32,33]. This method is based on a constrained minimization approach. Instead of minimizing a quantity consisting of a grid
quality measure plus an equidistribution measure, this method involves minimizing a grid quality measure constrained lo-
cally by the equidistribution principle. This constraint is enforced by a local Lagrange multiplier. In this fashion, the method
chooses the optimal grid which is compatible with the equidistribution principle. The minimization procedure results in a
single, nonlinear, elliptic equation for the Lagrange multiplier with no tunable parameters, the Monge–Ampère equation [34].
This equation has been shown (see e.g. [35]) to have a unique solution in 2D and 3D. Our variational method achieves equi-
distribution up to truncation error. This is unlike existing elliptic or variational approaches which, besides requiring as many
equations as the dimensionality of the problem, in general do not enforce equidistribution locally. Furthermore, in this work,
we also establish a connection between the Monge–Kantorovich approach and the minimization of grid cell distortion
(smoothness), which is a very desirable property in grid generation (see e.g. [11,24]).
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Our approach combines the advantages of both variational and elliptic grid generation approaches. The variational char-
acter of our method is obvious, as it stems from a minimization procedure. The leading term of the resulting Euler–Lagrange
equation is a Laplace operator (Section 2.2), and the linearized full operator is elliptic in nature (Section 3.2). Therefore, the
method is suitable for modern, fast nonlinear solvers for elliptic equations. Specifically, we will demonstrate in this study the
effectiveness of multigrid-preconditioned Newton–Krylov methods.

We would like to point out that the Monge–Ampère equation has been discussed before in the context of grid generation
in Ref. [36], where its suitability for blow-up problems (with a developing point singularity) was shown. However, in that
reference, the Monge–Ampère equation is parabolized to obtain an approximate solution (vs. the scalable, fully nonlinear
algorithm proposed here). Further, there was no discussion of grid optimality in any sense.

The remainder of this paper is organized as follows. In Section 2 we formulate the problem and introduce our equidistri-
bution approach based on Monge–Kantorovich optimization, and the resulting Monge–Ampère equation. In Section 3 we dis-
cuss certain properties of the Monge–Kantorovich approach, such as ellipticity and the connection with the minimization of
grid distortion (maximization of grid smoothness). The numerical implementation of the equidistribution PDE is briefly dis-
cussed in Section 4. In Section 5, the Monge–Kantorovich approach is tested with several challenging examples. A compar-
ison is also made with the deformation method [29] and with a method that minimizes grid-cell distortion. All the tests
demonstrate the effectiveness and robustness of the Monge–Kantorovich approach in achieving optimally equidistributed
grids. Conclusions are drawn in Section 6. The Appendix briefly reviews the deformation method [29].

2. Monge–Kantorovich optimization

2.1. Prescribing the Jacobian

The problem involves finding a one-to-one transformation in physical space according to a prescribed transformation
Jacobian (or density or monitor function), i.e. to generate an adaptive grid with prescribed volumes. In this study, we focus
on the 2D case. An example of the applicability of the method to 3D is presented in Ref. [37]. Let X � R2 be a bounded domain
with boundary oX. We define a two-dimensional coordinate transformation in physical space between the coordinates of an
initial grid x ¼ ðx; yÞ and the ones of the final grid x0 ¼ ðx0; y0Þ as w : X ! X, i.e. x0 ¼ wðxÞ. See Fig. 1. We will assume that the
boundary oX maps to itself. The Jacobi matrix J is defined as
J ¼
ox0
ox

ox0
oy

oy0

ox
oy0

oy

 !
; ð1Þ
or Jij ¼ ox0i=oxj. The Jacobian of the transformation w from x! x0 is its determinant det½rx0 �, which in 2D can also be written
as ½x0; y0�, where ½f ; g� ¼ ðof=oxÞðog=oyÞ � ðof=oyÞðog=oxÞ is the familiar Poisson bracket. Both the initial grid x and the final grid
x0 are mapped from the unit square n ¼ ðn;gÞ 2 N � ½0;1� � ½0;1�, the logical space. We assume the mapping / : N! X, i.e.
x ¼ /ðnÞ, is given and jðnÞ is its Jacobian. On the other hand, the mapping /0 : N! X giving x0 ¼ /0ðnÞ is unknown and j0ðnÞ
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Fig. 1. Sketch of the mappings between the logical and physical spaces N and X.
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is its (prescribed) Jacobian. In what follows we will always use the lower case to refer to the Jacobian in terms of the logical
variables n and the upper case to refer to the same Jacobian expressed in terms of the coordinates of the initial and final grids
x;x0. For instance, we have
j0ðn;gÞ ¼ J0ðx0ðn;gÞ; y0ðn;gÞÞ ¼ J0ðx0; y0Þ ð2Þ
for the transformation /0 from n! x0.
The sketch in Fig. 1 shows the physical and logical domains and the relative mapping transformations. We envision po-

sitive, nonuniform density (monitor) functions qðxÞ and q0ðx0Þ. With appropriate grids for x and x0, the corresponding density
q0ðnÞ on N will be constant (q0 ¼ 1) and be equidistributed by a uniform grid on N. Thus,
q0ðx0; y0Þdx0 dy0 ¼ qðx; yÞdxdy ¼ dndg: ð3Þ
We conclude qðx; yÞ ¼ 1=Jðx; yÞ and q0ðx0; y0Þ ¼ 1=J0ðx0; y0Þ. Accordingly, the density functions q and q0 must satisfy the density
normalization condition:
Z

X
qðx; yÞdxdy ¼

Z
X
q0ðx0; y0Þdx0dy0 ¼

Z
N

dndg ¼ 1: ð4Þ
The requirement that X maps to itself under the transformation w from x! x0 leads to:
Z
N

J0dndg ¼
Z

N
Jdndg ¼ V )Z

X

J0ðx0ðx; yÞ; y0ðx; yÞÞ
Jðx; yÞ � 1

� �
dxdy ¼

Z
X

qðx; yÞ
q0ðx0ðx; yÞ; y0ðx; yÞÞ � 1
� �

dxdy ¼ 0; ð5Þ
which simply states that the total volume of the physical domain remains the same under the transformation w. This con-
dition must be satisfied by any map x0ðxÞ that maps X to itself. Note that whereas Eq. (4) is a condition on the densities q and
q0, Eq. (5) is a condition on q, q0 and the map w, i.e. on x0ðxÞ.

The aim of this study is to find the one-to-one and onto transformation w : X ! X giving x! x0 such that
½x0; y0� ¼ qðx; yÞ
q0ðx0; y0Þ for all ðx; yÞ 2 X: ð6Þ
Eq. (6) ensures that the final grid will be equidistributed according to the densities q and q0. Eq. (5) is a solvability condition
for finding this transformation w. As we shall see (Section 4.3), enforcing Eq. (5) is crucial to improve the convergence rate of
the numerical algorithm.

It is clear that, so posed, the problem has an infinite number of solutions. In what follows, we propose an approach to seek
a map w : x! x0 leading to a single grid which is optimal in a well-defined sense.

2.2. Monge–Kantorovich optimization: Minimization of the L2 norm of the grid displacement

We begin with formulating the coordinate transformation in terms of a displacement function p ¼ ðpx; pyÞ:
x0 ¼ xþ pxðx; yÞ; ð7Þ
y0 ¼ yþ pyðx; yÞ: ð8Þ
In this paper, we will restrict ourselves to physical domains characterized by a four-sided quadrilateral, in which each side of
the unit square in logical space N is mapped to a corresponding straight side in the physical space X. (Extension to domains
with curved boundaries has been carried out in Ref. [37].) On the boundary segments, we require that the displacement p
satisfies
p � n ¼ 0 on oX; ð9Þ
where n is the unit vector normal to the boundary. This means that the boundary points are allowed to move only tangen-
tially to the boundary, so that the boundary oX maps to itself. This is consistent with Eq. (5). Using Eqs. (7) and (8), the Jaco-
bian can be written as
½x0; y0� ¼ ox0

ox
oy0

oy
� ox0

oy
oy0

ox

� �
¼ 1þ opx

ox

� �
1þ

opy

oy

� �
�

opy

ox
opx

oy
: ð10Þ
We now formulate a variational principle for which p is optimal in some sense, with the constraint of equidistribution built-
in. We first consider a generic functional of the mapping
I½x0� ¼
Z

X
Gðx;x0;x0xi Þdxdy; ð11Þ
where G is a scalar function, and x0xi ¼ ox0=oxi. The functional (11) is minimized if the mapping x0ðxÞ obeys the well-known
Euler–Lagrange equations.
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Next, we construct a function G consisting of a term proportional to the square of the grid displacement p plus a con-
straint enforced with a local Lagrange multiplier kðx; yÞ (which ensures that the cell volumes of the final grid satisfy a given
Jacobian J0=J equal to qðx; yÞ=q0ðx0; y0Þ, i.e. equidistribution):
Gðx;x0; x0xi ; kÞ ¼ qðx; yÞ ðx
0 � xÞ2

2
þ kðx; yÞ q0ðx0; y0Þ ox0

ox
oy0

oy
� ox0

oy
oy0

ox

� �
� qðx; yÞ

� �
: ð12Þ
In a time-stepping context, this leads to moving meshes with minimal grid velocities. This is of interest because excessive
grid velocity may be a significant source of error stemming from the grid advective term [38].

The resulting Euler–Lagrange equations corresponding to the minimization of integral (11) with G given by (12) are
ðx0 � xÞqþ kbJ oq0

ox0
¼ ½kq0; y0�; ð13Þ

ðy0 � yÞqþ kbJ oq0

oy0
¼ �½kq0; x0�: ð14Þ
(The boundary conditions ensure that the boundary terms due to the integrations by parts are zero.) Here, bJ ¼ J0=J. We can
write bJ ¼ ½x0; y0�, and note the relation ½f ; g� ¼ bJðx; yÞ½f ; g�x0 , where ½�; ��x0 denotes the Poisson bracket taking derivatives with
respect to x0. Using this and qðx; yÞJðx; yÞ ¼ q0ðx0ðx; yÞ; y0ðx; yÞÞJ0ðx0ðx; yÞ; y0ðx; yÞÞ, we deduce
x0 � x ¼ ok
ox0

; ð15Þ

y0 � y ¼ ok
oy0

; ð16Þ
where k ¼ kðxðx0ÞÞ. We see that x ¼ w�1ðx0Þ is a gradient with respect to x0,
x ¼ x0 � rx0k ¼ rx0 ðx02=2� kÞ ¼ rx0Vðx0Þ: ð17Þ
The inverse x0 ! x exists because the Jacobian is positive. The inverse of a gradient map is a gradient map, and is in fact given
by the Legendre transformation
x0 ¼ rUðxÞ; ð18Þ
UðxÞ ¼ x � x0ðxÞ � Vðx0ðxÞÞ: ð19Þ
(Here and elsewhere,r equalsrx.) This fact, that the map w : X ! X minimizing the L2 norm of p ¼ x0 � x [with weight qðxÞ]
is a gradient map, has been noted in the mathematics community [39,40], but we believe that the above is the most acces-
sible derivation. Using x � x0 � x02=2 ¼ x2=2� p2=2, we find U ¼ x2=2� p2=2þ k or
p ¼ rU ð20Þ
with U ¼ k� p2=2.
Eq. (20), together with the constraint Eq. (6) and the boundary conditions p � n ¼ 0 on oX, define the Monge–Kantorovich

optimal displacement approach. The equation holds for p of arbitrary magnitude, and has an important interpretation in a
time-stepping context. In this case, the movement of the grid points by w defines a grid velocity proportional to p, and the
conclusions above guarantee that w moves the grid in an irrotational manner, i.e. it generates no vorticity.

By using Eqs. (20) and (6)–(8), we obtain the Monge–Ampère equation for U
r2Uþ o2U
ox2

o2U
oy2 �

o2U
oxoy

 !2

¼ qðx; yÞ
q0ðx0; y0Þ � 1: ð21Þ
Note that the solvability condition (5) ensures that the integral of the right hand side is zero. The second and third terms on
the left are the determinant of the Hessian matrix Hij ¼ o2U=oxioxj, i; j ¼ 1;2. Eq. (21) is to be solved with the boundary con-
ditions of Section 4.3.1, or n � rU ¼ 0, allowing one to obtain the new grid. Note that, unlike most other grid generation ap-
proaches, which require as many equations as dimensions, the Monge–Ampère equation is a single nonlinear equation for U
with no adjustable parameters.

2.3. Direct and inverse approaches

Eq. (21) has two nonlinear aspects, namely the Hessian and the dependence of q0 on x0 ¼ xþrU. If jq0 � 1j is large or
varies over a short length scale, the latter nonlinearity can lead to numerical difficulties. For cases in which jq� 1j is small
(q ¼ 1 is an important special case), it can be less difficult to solve the inverse problem. That is, we define x ¼ x0 þ rbUðx0Þ,
leading to the inverse Monge–Ampère equation
r2
x0
bU þ o2 bU

ox02
o2 bU
oy02
� o2 bU

ox0oy0

 !2

¼ q0ðx0; y0Þ
qðx; yÞ � 1: ð22Þ
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Again, condition (5) implies that the integral of the right hand side is zero. Let us specialize the discussion for now to the case
qðx; yÞ ¼ 1. In this case, the Hessian is the only source of nonlinearity: The right-hand side does not contribute to the non-
linearity since x0 and y0 are now independent variables. The solution to Eq. (22) gives x as a function of x0, i.e. the map w�1 of
Fig. 1. To complete the computation, this map must be inverted numerically to obtain the direct map w.

In spite of the advantage of doing the inverse problem for q ¼ 1 (or q close to unity), there are two major disadvantages.
First, since qðxÞ is (almost) uniform, it makes more sense to discretize the (direct) Monge–Ampère equation on a uniform
grid in x. For jq0 � 1j � 1, particularly if jrx0q0j is large, discretizing Eq. (22) on a uniform grid in x0 is seriously suboptimal,
since a very fine uniform mesh will be required to resolve sharp features present in q0. Second, the interpolations involved in
inverting w�1 to obtain w involve some loss of accuracy and incur some computational cost. Nevertheless, in Section 5.2 we
use the inverse approach in order to compare with the deformation method [29], which in its original formulation was de-
signed to solve the inverse problem.

For both direct and inverse approaches, we need to discretize the Monge–Ampère Eq. (21) in the logical (computational)
mesh. A very important case where this is of the essence is when the Monge–Ampère equation is solved in a time stepping
context, in which both qðx; yÞ and q0ðx0; y0Þ can be far from unity, although q=q0 is close to unity. Such a reformulation, in
which all derivatives are with respect to ni, can be readily performed as follows (where we will omit summation over re-
peated indices). For the direct approach, one notices that, in the logical space, r2U ¼ 1

J oiðJgij
ojUÞ, where oi � o=oni and J,

gij are the Jacobian and contravariant metric tensor of the map xðnÞ, respectively. For the latter, gij ¼ ðoni=oxkÞðonj=oxkÞ. Also,
noticing that ½oxU; oyU� ¼ ½n;g�½oxU; oyU�N ¼ J�1½oxU; oyU�N, and that qðx; yÞ ¼ J�1, we find that the logical representation of the
direct Monge–Ampère equation reads:
oiðJgij
ojUÞ þ ½oxU; oyU�N ¼

1
q0ðx0; y0Þ �

1
qðx; yÞ : ð23Þ
Here, the index N indicates that the derivatives in the Poisson bracket are taken in the logical space. The components of rU
needed in the Poisson bracket can be expressed in terms of derivatives with respect to ni by writingrU ¼ oiUrni, and using
the fact that rni or oni=oxj is the inverse of Jij ¼ oxi=onj. Equivalently, introducting a third dimension z, we have
rni ¼

�ij3
J ox=onj � êz, where �ij3 is the Levi-Civita tensor. A similar argument for the inverse Monge–Ampère formulation

(22) in terms of the metric tensor and Jacobian of the map x0ðnÞ yields:
oiðJ0ðg0ÞijojUÞ þ ½ox0U; oy0U�N ¼
1

qðx; yÞ �
1

q0ðx0; y0Þ ð24Þ
with the components of rx0U found in a similar fashion.

3. Properties of Monge–Kantorovich optimization

We now proceed to establish certain important properties of the Monge–Kantorovich approach and the Monge–Ampère
equation, Eq. (21). These include the relation with grid distortion (grid smoothness) and ellipticity.

3.1. Connection to optimal grid distortion or smoothness

Our purpose in this section is to establish a connection between the approach based on Monge–Kantorovich optimization
and minimization of grid distortion. The latter can be quantified by the functional (11), with G given by:
Gðx; x0;x0xi ;lÞ ¼
g11 þ g22

2
qðx; yÞ � lðx; yÞ q0ðx0; y0Þ ox0

ox
oy0

oy
� ox0

oy
oy0

ox

� �
� qðx; yÞ

� �
; ð25Þ
where lðx; yÞ is another local Lagrange multiplier, which again enforces equidistribution locally. The distortion measure
ðg11 þ g22Þ is the trace of the covariant metric tensor, defined as g ¼ JTJ, where J is the Jacobi matrix of w, defined in
Eq. (1). In component notation, gij ¼ JT

ikJkj, with repeated indices indicating summation. (That is, the Euclidean distance
dx0k dx0k equals gij dxi dxj.) The mean distortion in Eq. (25) (whose integral is related to the so-called smoothness measure
of Ref. [11]) thus equals
g11 þ g22 ¼
ox0

ox

� �2

þ ox0

oy

� �2

þ oy0

ox

� �2

þ oy0

oy

� �2

: ð26Þ
Variational principles based on smoothness have previously been used in grid generation. Examples are in papers by Win-
slow [9,10], Brackbill and Saltzman [11] and, more recently, Huang [18]. However, smoothness has not been used in the con-
text of using a local Lagrange multiplier to enforce equidistribution exactly. In fact, in these references, a linear combination
of the smoothness integral and an equidistribution integral was minimized, so that neither was exactly minimized.

In order to understand the effect of the minimization of G in Eq. (25), it is of interest to consider the eigenvalues of the
metric tensor (k1 and k2), which are related to the elongation of a given computational cell in x0 relative to the corresponding
cell in x (k1 ¼ k2 implies that a square cell maps to a square cell). The trace of the metric tensor is equal to the sum of these
eigenvalues,
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g11 þ g22 ¼ k1 þ k2; ð27Þ
while the local Jacobian constraint implies
k1k2 ¼
q
q0

� �2

: ð28Þ
The constrained minimization outlined above can be understood in terms of the local minimization of k1 þ k2 with the con-
straint k1k2 ¼ C2 (with C a constant), which gives k1 ¼ k2 ¼ C > 0 (i.e. a square cell). Consequently, it follows that minimizing
the trace of the metric tensor constrained by the local cell volume results in the minimal grid cell distortion in x0 relative to x
which is compatible with the equidistribution constraint.

The Euler–Lagrange equations resulting from minimizing (11) with (25) read:
r � ðqrx0Þ þ lbJ oq0

ox0
¼ lq0; y0½ �; ð29Þ

r � qry0ð Þ þ lbJ oq0

oy0
¼ � lq0; x0½ �: ð30Þ
(Again the boundary terms obtained from integrating by parts are zero.) We refer to Eqs. (6), (29) and (30), with suitable
boundary conditions, as the direct optimal distortion method. In Section 5, we will perform numerical calculations on the in-
verse optimal distortion method, which is obtained from Eqs. (6), (29) and (30) by letting ðx;x0Þ ! ðx0;xÞ, ðq;q0Þ ! ðq0;qÞ,
and bJ ! 1=bJ .

Similar manipulations to the ones conducted for Eqs. (15) and (16) lead to
1
q
r � ðqrx0Þ ¼ ol

ox0
; ð31Þ

1
q
r � ðqry0Þ ¼ ol

oy0
; ð32Þ
or q�1r � ðqrx0Þ ¼ rx0l. In general x0 is not a gradient map. However, for q ¼ 1þ OðeÞ and q0 ¼ 1þ OðeÞ, we obtain
x0 ¼ xþ OðeÞ or p ¼ OðeÞ, and it follows, to lowest order in e, that
r2p ¼ rl: ð33Þ
Eq. (33) is of higher order than that of the Monge–Kantorovich approach, Eq. (20), and therefore requires more boundary
conditions. We have found that specifying both the normal and tangential boundary conditions on p leads to a well-posed
problem.

For jej 	 1, we can establish a relationship between Monge–Kantorovich optimization and minimum distortion optimi-
zation. Suppose p1 ¼ rU is a solution to Eq. (21), with p1 � n ¼ 0 on oX. Suppose further that we have a solution of Eq. (33)
with r2p2 ¼ rl and with p2 ¼ p1 on oX. In particular, this means that p2 � n ¼ 0 on oX, but the tangential component
p2 � t–0 is specified also on oX (t being the unit vector tangential to the boundary). Defining l ¼ r2U, we find
r2½p2 �rU� ¼ r2½p2 � p1� ¼ 0, with p2 � p1 equal to zero on the boundary. We conclude that p2 ¼ p1 on X. Therefore,
the Monge–Kantorovich optimization solution p1 ¼ rU is also a solution to the optimal distortion method for jej 	 1,
and Eq. (21) will produce optimally smooth grids. However, since the optimal distortion method requires p (and not only
p � n) to be specified on oX, there are other solutions to the optimal distortion problem, with varying degrees of mean dis-
tortion Eq. (26). For example, as we shall see in Section 5.1 for an example with e � Oð1Þ, the Monge–Kantorovich solution
solution p1 with p1 � n ¼ 0 on oX (which would be a minimum distortion solution for e small) has less distortion near the
boundary than the minimum distortion solution with p2 ¼ 0 on oX.

3.2. Ellipticity of the linearized PDE

We proceed to show that the linearized equidistribution PDE, Eq. (21), is elliptic. This is of relevance for the applicability
of multigrid methods in the solver algorithm (Section 4.2). As obtained in Section 2, the equidistribution nonlinear PDE
reads:
F½U� ¼ 1þr2Uþ oU
ox

;
oU
oy

� �
¼ qðxÞ

q0ðx0Þ : ð34Þ
Taking U ¼ U0 þ dU and linearizing with respect to dU, there results the linear operator:
L½dU� ¼ r2dUþ odU
ox

;
oU0

oy

� �
þ oU0

ox
;
odU
oy

� �
:

Here, U0 defines a mapping x00 ¼ xþrU0. Notice that the terms associated with the linearization of q0ðx0; y0Þ are disregarded
since they involve only first derivatives of U and therefore do not affect the definition of ellipticity. Expanding the Poisson
brackets, we find:
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LðdUÞ ¼ 1þ o2U0

oy2

 !
o2dU
ox2 þ 1þ o2U0

ox2

 !
o2dU
oy2 � 2

o2U0

oxoy
o2dU
oxoy

; ð35Þ
which can be cast in the standard quadratic form Ao2dU=ox2 þ Co2dU=oy2 þ 2Bo2dU=oxoy, with A ¼ ð1þ o2U0=oy2Þ,
C ¼ ð1þ o2U0=ox2Þ, and B ¼ �o2U0=oxoy. The linear PDE in Eq. (35) is elliptic if and only if AC � B2 > 0 [34]. However, it is
straightforward to show that AC � B2 ¼ F½U0� ¼ qðxÞ=q0ðx00Þ, which is positive by definition and so the ellipticity condition
is satisfied. In most cases of interest, U0 will correspond to a previous time step (in dynamic computations) or to a previous
Newton iterate.

4. Numerical implementation

In this section, we discuss the details of the numerical implementation of the Monge–Kantorovich approach, Eq. (21).
Here and in Section 5, for simplicity, we will consider X ¼ N and the identity mapping between the logical space N and
the initial grid in physical space: x ¼ n. This implies J ¼ 1.

4.1. Discretization of the equidistribution PDE, Eq. (21)

For the discretization of Eq. (21), we place U at the cell centers of the uniform logical grid and use ghost cells to enforce
the boundary conditions. The Laplacian is discretized according to the usual 5-point stencil:
r2Uji;j ¼
Uiþ1;j � 2Ui;j þUi�1;j

Dx2 þUi;j�1 � 2Ui;j þUi;j�1

Dy2 ; ð36Þ
where i and j label the x and y position of a generic cell center and Dx;Dy are the width and height of each cell in the uniform
initial grid (logical grid), respectively. The Hessian term in Eq. (21) (which can also be expressed as ½oxU; oyU�) contains cross
derivatives, and therefore requires a 9-point stencil for its discretization. For this, we compose two discrete first-order deriv-
atives as follows. First, we define first-order derivatives at vertices ði
 1=2; j
 1=2Þ as
oU
ox

����
iþ1=2;jþ1=2

� Uiþ1;j þUiþ1;jþ1 �Ui;j �Ui;jþ1

2Dx
; ð37Þ

oU
oy

����
iþ1=2;jþ1=2

� Ui;jþ1 þUiþ1;jþ1 �Ui;j �Uiþ1;j

2Dy
: ð38Þ
These are introduced in similarly defined first-order derivatives at cell centers ði; jÞ (found by replacing i! i� 1=2 and
j! j� 1=2 in the expressions above), to obtain the 9-point stencil discretization sought.

4.2. Newton–Krylov solver with multigrid preconditioning

In order to solve the nonlinear equation of the Monge–Kantorovich approach, Eq. (21), we use a nonlinear inexact New-
ton–Krylov solver. That is, we solve the nonlinear system (21), the discretized form of which is GðUÞ ¼ 0 (where U is the
vector containing the values of Uðx; yÞ at cell centers). This is performed iteratively by solving successive linear systems
of the form:
oG
oU

����
k

dUk ¼ �GðUkÞ ð39Þ
with Ukþ1 ¼ Uk þ bdUk. The parameter b (6 1) damps the Newton update to extend the domain of convergence of Newton’s
method convergence in the face of very nonlinear systems. Here, b is determined using the Armijo rule [41].

Nonlinear convergence is determined by:
kGðUkÞk2 < �a þ �rkGðU0Þk2 ¼ �t ; ð40Þ
where k � k2 is the L2-norm (euclidean norm), �a ¼
ffiffiffiffi
N
p
� 10�15 (with N the total number of degrees of freedom, N ¼ nxny) is

an absolute tolerance to avoid trying to converge to below roundoff, �r is the Newton relative convergence tolerance (set to
10�4 in this work), and GðU0Þ is the initial residual. For our purposes, we use the identity x0ðxÞ ¼ x, or U ¼ 0, as the initial
guess.

Such linear systems are solved iteratively with Krylov methods, which only require matrix–vector products to proceed.
Because the linear system matrix is a Jacobian matrix, such matrix–vector products can be implemented Jacobian-free using
the Gateaux derivative:
oG
oU

����
k

v ¼ lim
�!0

GðUk þ �vÞ � GðUkÞ
�

; ð41Þ
where in practice a small but finite � is employed [41]. Thus, the evaluation of the Jacobian-vector product only requires the
function evaluation GðUk þ �vÞ, and there is no need to form or store the Jacobian matrix.
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An inexact Newton method [42] is used to adjust the convergence tolerance of the Krylov method at every Newton iter-
ation according to the size of the current Newton residual, as follows:
kJkdUk þ GðUkÞk2 < gkkGðUkÞk2; ð42Þ
where gk is the inexact Newton parameter and Jk ¼ oG
oU jk is the Jacobian matrix. Thus, the convergence tolerance of the Krylov

method is loose when the Newton state vector Uk is far from the nonlinear solution, but tightens as Uk approaches the solu-
tion. Hence, the linear solver works the hardest when the Newton state vector is closest to the nonlinear root. Superlinear
convergence rates of the inexact Newton method are possible if the sequence of gk is chosen properly [41]. Here, we employ
the same prescription as in [43]:
gA
k ¼ c

kGðUkÞk2

kGðUk�1Þk2

� �a

;

gB
k ¼min½gmax;maxðgA

k ; cg
a
k�1Þ�;

gk ¼min gmax;max gB
k ; c

�t

kGðUkÞk2

� �� �
;

with a ¼ 1:5, c ¼ 0:9, and gmax ¼ 0:9. The convergence tolerance �t is defined in Eq. (40). In this prescription, the first step
ensures superlinear convergence (for a > 1), the second avoids volatile decreases in gk, and the last avoids oversolving in
the last Newton iteration. We also use a quadratic line-search backtracking algorithm [41] for added robustness of the non-
linear solver.

A further advantage of Krylov methods is that they can be preconditioned by considering the alternate systems
JkP�1

k PkdUk ¼ �Gk (right preconditioning) or P�1
k JkdUk ¼ �P�1

k Gk (left preconditioning). Such a preconditioning step can be
straightforwardly and efficiently implemented in the Krylov algorithm as two consecutive matrix–vector products, and
has the potential of substantially improving the convergence properties of the Krylov iteration if P�1

k � J�1
k . Here, we use mul-

tigrid (MG) right preconditioning, which has been shown in many applications [20,44–49,43] to deliver optimal, scalable
convergence rates. In fact, for some of the examples considered in Section 5, we have observed that the MG-preconditioned
approach results in a two order of magnitude improvement in the iteration count and an order of magnitude speedup in the
CPU time vs. the unpreconditioned one. While multigrid methods as solvers are very sensitive to the details of the smoother
and the restriction and prolongation operators [50], as preconditioners they have shown remarkable robustness even with
low-order interpolation operators [44–48,51]. Here, we use a V(4,4) multigrid cycle with damped Jacobi as smoother (with
damping parameter x ¼ 0:7 unless otherwise noted), agglomeration for restriction, and bilinear prolongation.

The ellipticity property of the linearized equidistribution PDE Eq. (21) guarantees the stability of the Jacobi smoother. In-
deed, it can be shown that, for the linearized version of Eq. (21), namely Eq. (35), the spectral radius r of the Jacobi iteration
matrix is jrj < 1 when:
j2þr2U0j > 2jo2U0=oxoyj; ð43Þ
where U0 corresponds to the previous Newton iterate on which the linearization is conducted. Alternatively, we can write
Eq. (43) as
jAþ Cj > 2jBj ð44Þ
with A;B;C defined in Section 3.2. Squaring Eq. (44) and subtracting 4AC results in
ðA� CÞ2 > 4ðB2 � ACÞ: ð45Þ
The ellipticity property of the linearized equidistribution PDE (Section 3.2) implies that the right hand side of the equation
above is always negative, thereby ensuring that the inequality is always satisfied. This proves that the spectral radius of the
Jacobi iteration matrix will always be smaller than unity, and therefore that a damped Jacobi iteration can be an effective
multigrid smoother.

4.3. Numerical implementation issues

There are several important numerical details that have the potential of derailing the viability of a given solution algo-
rithm of the Monge–Kantorovich equation. In the context of our finite-difference implementation, these are: (1) the numer-
ical treatment of the boundary conditions n � rU ¼ 0, and (2) the numerical enforcement of the solvability condition Eq. (5).
We proceed to discuss these in some detail.

4.3.1. Boundary conditions
Our finite-difference implementation places finite-volume faces at physical boundaries. The unknown potential U is

placed at cell centers. The boundary conditions n � rU ¼ 0 are imposed via ghost cells. Ghost cells across boundary faces
are filled trivially by extrapolation using this homogeneous Neumann boundary condition. In practice, this simply implies
that, taking the x ¼ 1 boundary face, Unxþ1;j ¼ Unx ;j, and similarly for other faces. Here, nx and ny are the number of cells in
each direction and the boundary face x ¼ 1 corresponds to i ¼ nx þ 1=2. Similarly, the face x ¼ 0 has i ¼ 1=2. However, since
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the discretization of the Monge–Kantorovich equation requires a 9-point stencil, corner ghost cells need to be filled as well.
To fill these, we have found it crucial to enforce that the value in the ghost corner be equal to the corner value within the
domain (e.g. for the northwest corner, we have Unxþ1;nyþ1 ¼ Unx ;ny ). It is easy to show that, with this choice and the previous
recipe for face ghost cells, the following consistency condition is enforced at the corners of the domain:
Fig. 2.
Jacobia
Unxþ1;nyþ1 ¼ Unxþ1;ny ¼ Unx ;nyþ1 ¼ Unx ;ny :
In essence, this enforces the corners to remain fixed.

4.3.2. Solvability condition
The solvability condition Eq. (5) states that the physical volume mapped by x0 and x be the same. The implications of this

normalization requirement are different depending on whether one is using a direct or an inverse Monge–Kantorovich for-
mulation (Section 2.3), assuming that qðx; yÞ equals unity. In an inverse formulation, where x$ x0 in Eq. (5), the right-hand
side of Eq. (22), q0ðx0; y0Þ � 1, depends only on the independent variables x0; y0. In this case, the solvability condition is auto-
matically satisfied by the density normalization condition, Eq. (4), and nothing changes during the nonlinear iterations. In a
direct formulation, the right-hand side of Eq. (21), 1=q0ðx0; y0Þ � 1, depends on the new variables, i.e. on U, so that the solv-
ability condition is a constraint on the mapping x0ðxÞ, i.e. on U. In order to take this solvability contraint into account and to
improve convergence of the solver for the direct case, we have normalized the right-hand side of Eq. (21) by letting
1=q0ðx0; y0Þ � 1! C=q0ðx0; y0Þ � 1 and finding C so that Eq. (5) is satisfied for each nonlinear function call. Although conver-
gence may be achieved without this renormalization, we have found that this renormalization improves the convergence
and robustness of the solver appreciably. By performing this normalization at every nonlinear call, the solver corrects for
small changes in the normalization constant due to numerical errors (small changes in the total volume) which occur as
the map evolves. While performing the normalization procedure at every function evaluation increases the cost per call,
the corresponding reduction in linear and nonlinear iterations easily offsets this increase.

4.4. Equidistribution diagnostic

In order to check the enforcement of the equidistribution constraint, one must define the discretized volumes of the de-
formed cells. Again, we assume qðx; yÞ ¼ Jðx; yÞ ¼ 1, i.e. the old physical grid and the logical grid are identical.

Since the shape of the new cell is deformed, we numerically compute the Jacobian det½rx0� using the four-point approx-
imation [52–54]. For a given cell in the new grid coordinate system, let us denote the four vertices of the cell by ðx0i; y0iÞ,
i ¼ 1;2;3;4 counterclock-wise from the lower left corner. See Fig. 2. We compute the derivatives at each cell center by
Dx0

Dx
¼ ðx

0
2 � x01 þ x03 � x04Þ

2Dx
; ð46Þ

Dx0

Dy
¼ ðx

0
4 � x01 þ x03 � x02Þ

2Dy
; ð47Þ

Dy0

Dx
¼ ðy

0
2 � y01 þ y03 � y04Þ

2Dx
; ð48Þ

Dy0

Dy
¼ ðy

0
4 � y01 þ y03 � y02Þ

2Dy
: ð49Þ
Then we compute the numerical Jacobian at the center of the cell as
Jnum ¼
Dx0

Dx
Dy0

Dy
� Dx0

Dy
Dy0

Dx
; ð50Þ
x

y

(x,y) (x+Δx,y)

(x,y+Δy) (x+Δx,y+Δy)

(x′
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1
)

(x′
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4
)

(x′
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)
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)
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ψ

Sketch of the mapping transformation for a single cell. The spatial discretization adopted in Eqs. (46)–(49) and the definition of the numerical
n, Eq. (50), are such that JnumDxDy equals the area of the polygon connecting the four vertices of the deformed cell.
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and JnumDxDy is the cell volume in 2D. Notice that, with this choice of the discretization, the area of the deformed cell cor-
responds to the natural geometrical area of the polygon connecting the four vertices of the cell.

4.5. Implementation algorithm

Here we summarize the implementation algorithm for the nonlinear solution of the Monge–Kantorovich approach, Eq.
(21). For notation, see Section 4.2.

(1) Start with a guess U ¼ U0, the values of U at cell centers.
(2) Evaluate the nonlinear residual, GðUkÞ.
(3) Check convergence [Eq. (40)].
(4) If not converged, compute the Newton update dUk by solving JkdUk ¼ �GðUkÞ.
(5) Compute the new Newton state Ukþ1 ¼ Uk þ bdUk. Go back to ð2Þ.
(6) If converged, compute the vertices of the new grid x0 ¼ xþrU by using Eqs. (37) and (38).

In order to solve iteratively for the Newton update using Krylov methods, the evaluation of the residual GðUÞ is essential.
We report its algorithm below:

(1) Given U, fill the ghost cells as discussed in Section 4.3.1.
(2) Compute the vertices of the new grid x0 ¼ xþrU by using Eqs. (37) and (38).
(3) Compute the cell centers of the new grid as
x0i;j ¼
x0iþ1=2;jþ1=2 þ x0iþ1=2;j�1=2 þ x0i�1=2;jþ1=2 þ x0i�1=2;j�1=2

4
: ð51Þ
(4) Compute q0ðx0Þ at cell centers. Apply renormalization of Section 4.3.2.
(5) Obtain GðUÞ, the discretized form of r2Uþ oU

ox ;
oU
oy

h i
� qðxÞ

q0 ðx0 Þ þ 1, at cell centers (the discretization of the first two terms
is discussed in Section 4.1).

5. Results

In this Section, we will apply the Monge–Kantorovich approach to several challenging tests. First, we will solve the
inverse problem, Eq. (22), to compare the Monge–Kantorovich approach to the optimal distortion method (inverse
approach), in order to test the connection between the two approaches established in Section 3.1 for an example where
e � Oð1Þ.

Second, we will compare the performance of the Monge–Kantorovich approach against the deformation method of Liao
and Anderson [29]. (Again we will use the inverse formulation for the Monge–Kantorovich approach, in order to compare
with the deformation method, which in its original formulation could deal only with the inverse problem, i.e. the Jacobian
specified as Jðx; yÞ [29].) This method (reviewed in the Appendix) finds cell-area equidistribution by requiring the grid to be
generated by means of a specified flow. The deformation procedure is designed specifically to take advantage of certain ODE
theorems to prove that, once a consistent flow is chosen, the mapping is one-to-one. See the Appendix for more details. The
method requires the solution of a second order system of time-dependent ODEs [the initial value problem defined by Eqs.
(A.4), (A.5)] with a given velocity field [Eqs. (A.6) and (A.7)]. To solve numerically these equations, we use a second-order
Runge–Kutta method. This is a very simple – and not very accurate – method, but we will use small time steps so that typ-
ically grid errors dominate most of the computations.

Finally, we will solve the direct Monge–Ampère equation, Eq. (21), for three very challenging examples.
All the methods have been coded in Fortran 90 and results, including accuracy and performance, are obtained with a

2.4 GHz Intel Xeon processor.
In order to check the accuracy of the various methods, we will compare the numerical Jacobian in the new coordinate

system to the prescribed Jacobian, namely, we test if J0 ¼ Jnum at the cell centers (recall that x ¼ n so that J ¼ 1). For this pur-
pose, we define the total error of the scheme as:
Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i;j

jJnum � J0j2i;jDxDy
s

: ð52Þ
We will also assess the quality of the adapted grid by measuring the global displacement of the grid points [according to Eq.
(12)]
kpk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i;j

ðqjpj2Þi;jDxDy
s

; ð53Þ
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as well as the global distortion of the cells [according to Eq. (25)]
Table 1
Exampl

Numbe

16� 16
32� 32
64� 64
128� 1
256� 2

Grid co
quality
kg11 þ g22k1 ¼
X

i;j

ðqjg11 þ g22jÞi;jDxDy: ð54Þ
5.1. Comparison of the Monge–Kantorovich approach with the optimal distortion method

First, we qualitatively compare the Monge–Kantorovich approach against the optimal distortion method, without the
assumption e	 1 (Section 3.1). In both cases, we solve the inverse problem. For the Monge–Kantorovich approach, we solve
Eq. (22) to obtain the mapping xðx0Þ and then invert it numerically to obtain x0ðxÞ. For the inverse optimal distortion method,
we solve Eqs. (6), (29) and (30) with ðx;x0Þ ! ðx0;xÞ, ðq;q0Þ ! ðq0;qÞ and bJ ! 1=bJ and again invert the mapping xðx0Þ numer-
ically. We consider qðx; yÞ ¼ 1 and the following functional form of the density function on the new grid

Example 1
q0ðx0; y0Þ ¼ C

2þ cos½8p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � 0:5Þ2 þ ðy0 � 0:5Þ2

q
�
; ð55Þ
where C is the normalization factor such that Eq. (4) is satisfied. Note that e � jq0 � 1j is of order unity (see Fig. 3).

The results for the Monge–Kantorovich approach are presented in Table 1. By looking at the equidistribution error as a
function of N ¼ nx � ny (with nx ¼ ny), one notices that the error scales as Dx2 � n�2

x , consistent with the truncation error
of the numerical scheme. Also, note that the method converges with practically the same number of linear and nonlinear
iterations for all the grids considered. This is consistent with the observation (third column) that the scaling of the CPU time
(ignoring the small cost of inversion) with the total number of grid cells N is linear (optimal).

Fig. 4 shows the grid generated by the Monge–Kantorovich approach (solid line) and an optimal distortion method with
p ¼ 0 on oX (dashed line) for a 32� 32 grid. First of all, note that the grids are finer in the regions in Fig. 3 where q0 is larger.
It is also clear that the two grids are practically indistinguishable in the interior region, but noticeably different near the four
corners. These differences can be attributed to the p ¼ 0 boundary condition (fixed boundary points). For the Monge–Kant-
orovich method, only the normal component of p is zero. These boundary conditions require the adapted grid to curve
noticeably near the boundary, much more so than the Monge-Kantorovich grid. (We have also checked numerically that,
Fig. 3. q0ðx0; y0Þ for Example 1. Note that e � jq0 � 1j is of order unity, and the ratio q0max=q0min is 3.

e 1, inverse formulation

r of cells Error CPU time (s) kpkMK
2 kg11 þ g22k

MK
1 Newton iterations GMRES iterations

9:64� 10�2 0.1 0.0173 1.449 3 3
2:28� 10�2 0.4 0.0173 1.466 4 4
5:78� 10�3 1.3 0.0173 1.470 4 4

28 1:46� 10�3 4.9 0.0174 1.470 4 4
56 3:67� 10�4 19 0.0174 1.471 4 4

nvergence study for the Monge–Kantorovich approach, reporting the equidistribution error, the CPU time (ignoring the cost of inversion), the grid
measures kpkMK

2 and kg11 þ g22k
MK
1 , and the number of linear and nonlinear iterations as functions of N ¼ nx � nyðnx ¼ nyÞ.
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Fig. 4. Example 1, inverse formulation. Comparison of the new grid configuration for q0 as in Eq. (55) and Fig. (3), obtained by the Monge–Kantorovich
approach (solid line) and the optimal distortion method (dashed line). The grid has nx ¼ ny ¼ 32.
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when px and py on oX obtained from the Monge–Kantorovich approach are used as boundary conditions for the optimal dis-
tortion method, the grids generated with the two methods are essentially identical.) We also notice that the newly generated
grids are symmetric about x0 ¼ 0:5, about y0 ¼ 0:5, and about the 45� axes, as required by the symmetry properties held by
the density q0 and the boundary. Overall, we can conclude that the two approaches produce very similar grids despite the
fact that this example has e � Oð1Þ. This is consistent with the results of Section 3.1, and suggests that even for e � Oð1Þ,
the Monge–Kantorovich approach very nearly minimizes the grid distortion.

5.2. Comparison of the Monge–Kantorovich approach with the deformation method

Second, we compare the Monge–Kantorovich approach with the deformation method of Liao and Anderson [29] in terms
of accuracy [Eq. (52)], quality of the grid defined by Eqs. (53) and (54), and computational time needed to achieve the solu-
tion. Again we consider the inverse problem, Eq. (22). To the best of our knowledge, the deformation method is the only
other method in the literature that is designed specifically to satisfy the equidistribution constraint. The method is reviewed
in the Appendix, to which we refer the interested reader for some details on our numerical implementation.

In order to cast the results in the correct perspective, it is useful to identify the sources of error associated with the imple-
mentation of the deformation method. These are:

 the spatial discretization of the integrals (A.6) and (A.7), for which we use a second-order numerical scheme;
 the temporal discretization of the ODE system (A.4), for which we use the second-order Runge–Kutta method;
 the spatial interpolation from the reference grid to the time-dependent physical grid (see the Appendix), for which we use

cubic splines. This source of error is generally negligible since it is of higher order than the spatial discretization of Eqs.
(A.6) and (A.7).

Since we are using an inverse formulation, which obtains w�1, there is an additional source of interpolation error in obtaining
w, i.e. x0ðxÞ. We ignore this source of error because it is in common with the inverse Monge–Kantorovich approach.

We investigate these sources of error by performing numerical experiments on Example 1 for differing number of cells in
the computational domain and by changing the temporal time step Dt. Results are presented in Tables 2 and 3, where we
report the error between the numerical and analytical Jacobian [as defined in Eq. (52)], some measures of the quality of
the grid, and the computational time needed to converge to the desired grid. By inspection of Table 2 (Dt ¼ 0:1), one notices
Table 2
Example 1, inverse formulation

Number of cells Error CPU time (s) kpk2

kpkMK
2
� 1 (%) kg11þg22k1

kg11þg22k
MK
1
� 1 (%)

16� 16 1:16� 10�1 0.02 +24 +1
32� 32 3:54� 10�2 0.1 +28 +2
64� 64 9:89� 10�3 0.4 +30 +3
128� 128 2:84� 10�3 1.5 +30 +3
256� 256 1:18� 10�3 6 +30 +3

Grid convergence study for the deformation method with Dt ¼ 0:1. The grid quality measures kpk2 and kg11 þ g22k1 are expressed relative to the corre-
sponding quantities obtained with the Monge–Kantorovich approach shown in Table 1.



Table 3
Example 1, inverse formulation

Number of cells Error CPU time (s) kpk2

kpkMK
2
� 1 (%) kg11þg22k1

kg11þg22kMK
1
� 1 (%)

16� 16 1:16� 10�1 0.2 +24 +1
32� 32 3:53� 10�2 0.9 +28 +2
64� 64 9:64� 10�3 3.4 +30 +3
128� 128 2:46� 10�3 13.6 +30 +3
256� 256 6:21� 10�4 55 +30 +3

Grid convergence study for the deformation method with Dt ¼ 0:01. The grid quality measures kpk2 and kg11 þ g22k1 are expressed in terms of variation
with respect to the corresponding quantities obtained with the Monge–Kantorovich approach in Table 1.
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that the error decreases a little more slowly than n�2
x when the number of grid points is doubled in each direction from the

16� 16 grid to the 128� 128 grid. However, from the 128� 128 to the 256� 256 grid the error decreases only by a factor of
2.4 and remains roughly constant for more refined grids (not shown). This indicates that the spatial discretization error is the
dominant source of error for nx 6 128, but for the more refined grids the temporal discretization error is important. At the
same time, by looking at Table 3 (obtained with Dt ¼ 0:01), it is clear that the error decreases roughly as n�2

x for all the cases
considered. Therefore we can conclude that Dt ¼ 0:01 is small enough to make the temporal discretization error negligible
for the grids considered in this Table. We mention at this point that we did not find any equidistribution errors or perfor-
mance comparisons reported in the literature for the deformation method. By comparing Table 1 with Tables 2 and 3, we
see that the Monge–Kantorovich approach and the deformation method are comparable (for equal grid size) in terms of equi-
distribution error. Another observation from Tables 2 and 3 is that the computational time (ignoring the cost of inversion)
needed to obtain the desired grid scales linearly (optimally) with the number of grid points. Notice also that, for the
256� 256 grid, the deformation method with Dt ¼ 0:01 is roughly three times slower than the multigrid preconditioned
Monge–Kantorovich approach (Table 1).

For comparison, in Fig. 5 we have superimposed the 32� 32 grids obtained by the Monge–Kantorovich approach (solid
line) and the deformation method (dashed line). Clearly, the differences in the grid are much larger than the corresponding
differences in the equidistribution error, which says that the two methods do not converge to the same grid. By looking at the
fourth and fifth columns of Table 3 for the deformation method (expressed in terms of variation with respect to the values
obtained with the Monge–Kantorovich approach), we see that the Monge–Kantorovich approach produces better quality
grids. For instance, for the 128� 128 grid, the norm of the displacement of the grid points is about 30% more while the over-
all distortion of the grid is about 3% more for the deformation method (which is significant given the smoothness of the tar-
get grid density; below we consider a much more challenging case which will show far more distortion with the deformation
method). These differences are evident in Fig. 5. It is not surprising that the deformation method does not produce optimal
grids, since it is not formulated in terms of a variational principle.

Third, we compare the Monge–Kantorovich approach (inverse method) and the deformation method (with Dt ¼ 0:01) for
the following very challenging example

Example 2
Fig. 5.
deform
q0ðx0; y0Þ ¼ C 1þ 9

1þ ½10r cosðh� 20r2Þ�2

" #
ð56Þ
0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x′

y′

Example 1, inverse formulation. Comparison of the new grid configuration obtained by the Monge–Kantorovich approach (solid line) and the
ation method (dashed line, Dt ¼ 0:01) using 32� 32 cells.
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with
Table 4
Exampl

Numbe

16� 16
32� 32
64� 64
128� 1
256� 2
512� 5

Grid co
quality
r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � 0:7Þ2 þ ðy0 � 0:5Þ2

q
;

h ¼ tan�1 y0 � 0:5
x0 � 0:7

� �
: ð57Þ
This example corresponds to a spiral centered at (0.7,0.5) with very tight arms (see Fig. 6). In this case, the ratio between the
maximum and minimum values of q0ðx0; y0Þ is about 9. Table 4 shows the grid convergence study for the Monge–Kantorovich
approach. Notice that the equidistribution error for coarse grids is quite large, and does not scale quadratically with doubling
the number of grid points in each direction until the grid is sufficiently refined. For instance, from the 16� 16 grid to the
32� 32 grid the error decreases only by a factor of 1.9, while from the 256� 256 grid to the 512� 512 grid the error de-
creases by a factor of 4.1. The computational time (ignoring the cost of inversion) needed for convergence, however, does
scale optimally with the number of grid cells, / N, consistent with a constant number of linear and nonlinear iterations
for all the grids considered. Fig. 7 (left) shows the grid xðx0Þðw�1) obtained by the Monge–Kantorovich approach for the
64� 64 grid. That is, the grid lines in x are obtained by applying w�1 to a uniform grid in x0. Fig. 7 (right) shows the grid
obtained by inverting the xðx0Þ mapping, and showing the image under w in x0 of a uniform grid in x. Clearly the grid on
the right is finer in regions of higher density q0 in Fig. 6.

We have also investigated the performance of the deformation method for Example 2 with Dt ¼ 0:01. The results are pre-
sented in Table 5. The equidistribution error is slightly worse than that of the Monge–Kantorovich approach and has not yet
reached the quadratic scaling with grid refinement for large grids: From the 256� 256 grid to the 512� 512 grid, the error
decreases by a factor of 3.2. The computational time (ignoring the cost of inversion) to reach the adapted grid scales opti-
mally with the number of grid points and is in fact close to that of Example 1. Table 5 also shows some grid quality measures
expressed in terms of variation with respect to the same quantities calculated with the Monge–Kantorovich approach. In
terms of these measures, the grid obtained with the deformation method is worse: For example, for the 256� 256 grid,
the grid-point displacement and the grid-cell distortion are respectively 5% and 15% higher than those of the Monge–Kant-
orovich approach. This fact can be clearly seen in Fig. 8, which shows the new grid configuration obtained with the defor-
mation method (left) and the related grid x0ðxÞ obtained by inversion (right). By comparing Figs. 7 and 8, it is clear than the
e 2, inverse formulation

r of cells Error CPU time (s) kpkMK
2 kg11 þ g22k

MK
1 Newton iterations GMRES iterations

4:22� 10�1 0.2 0.0766 1.528 5 6
2:17� 10�1 0.5 0.0801 1.578 6 7
9:45� 10�2 1.8 0.0810 1.612 6 7

28 2:88� 10�2 6.9 0.0815 1.622 6 7
56 7:16� 10�3 27 0.0817 1.624 6 7
12 1:76� 10�3 109 0.0818 1.625 6 7

nvergence study for the Monge–Kantorovich approach, reporting the equidistribution error, the CPU time (ignoring the cost of inversion), the grid
measures kpkMK

2 and kg11 þ g22k
MK
1 , and the number of linear and nonlinear iterations.

Fig. 6. q0ðx0; y0Þ for Example 2, which has q0max=q0min � 9.
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tion method produces some very highly elongated cells while the Monge–Kantorovich approach tends to minimize cell dis-
tortion. We also notice that, for this example, the grid obtained with the deformation method is folded in
x; y 2 ½0:35� 0:55� � ½0:04;0:08�.

A comment on grid folding (tangling) is in order. While prescribing a positive Jacobian ensures an untangled grid in the
limit to the continuum, finite resolution may in fact allow grid tangling. Fundamentally, the reason is that one can define a
tangled grid cell with positive average volume (as measured according to Section 4.4). The issue then becomes a matter of
robustness of a given grid equidistribution procedure against grid tangling when finite resolution is employed. In this light,
and as demonstrated by the previous example, the Monge–Kantorovich approach proposed here has a definite advantage,
since it is guaranteed to minimize grid displacement (and grid distortion approximately) for a given number of degrees of
freedom. Clearly, a tangled grid cell – even with positive average volume – counts against both principles, since it necessarily
requires larger displacements and more distortion than an untangled one. Thus, while we cannot offer a proof at this time
that the method will always result in an untangled grid, numerical experiments demonstrate that it performs robustly, much
more so than the deformation method.

5.3. Additional challenging tests

The results presented so far have highlighted the effectiveness of the Monge–Kantorovich approach in achieving a grid
with prescribed volumes: The constraint Eq. (6) is satisfied up to discretization truncation errors, the computational time
needed to achieve the solution scales linearly with the number of grid points, and the adapted grid is optimal with respect
0.25 0.3 0.35 0.4 0.45
0.9

0.92
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0.98

1
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y
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y
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0.9
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1
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y

0.35 0.4 0.45 0.5 0.55
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0.045
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Fig. 9. Example 2, inverse formulation. Comparison of the new grid configuration xðx0Þ obtained with the Monge–Kantorovich approach (left) and the
deformation method (right) for x; y 2 ½0:25� 0:45; 0:9� 1� and x; y 2 ½0:35� 0:55; 0:04� 0:08�. In the area indicated with the bold curve, the grid obtained
with the deformation method is folded.
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to the L2 norm of the displacement of the grid points and close to optimal with respect to grid distortion, measured as the
trace of the metric tensor (Section 3.1). In this subsection, we further test the robustness of the Monge–Kantorovich ap-
proach by solving the direct problem for three challenging cases. Clearly, the solution of the direct problem is more challeng-
ing since q0ðx0Þ ¼ q0ðxþrUÞ is a functional of the unknown U and this is an additional source of nonlinearity of Eq. (21). For
these challenging tests, with jq0 � 1j of order unity and with a wide range of scales, this source of nonlinearity presents more
difficulties that the Hessian in Eq. (21).

We start by solving Example 2 with the direct method and refer to this case as Example 3. The results are reported in
Table 6. It is evident that, for fine grids, the equidistribution error scales as n�2

x for nx ¼ ny (similarly to Example 2). For in-
stance, from the 256� 256 grid to the 512� 512 grid the error decreases by a factor of 3:9. The error is about half the error in
Table 4, which uses the inverse formulation. This is reasonable, because the inverse formulation uses a non-optimal uniform
grid in x0. The direct method uses a uniform grid in x, which is optimal because q ¼ 1.

The computational time for convergence scales linearly with the number of grid cells N and is roughly 3 times higher than
the time required for the solution of the inverse problem in Example 2 (although the computational time reported in Table 4
does not include the relatively small time needed for the inversion of the mapping). The number of linear and nonlinear iter-
ations remains roughly constant for all the grids considered, and are about double the number required in Table 4. Fig. 10
shows the new grid obtained with 64� 64 cells. When comparing Fig. 10 with Fig. 7 (right), small differences can be noticed.
These are due to the fact that, for the 64� 64 grid, the equidistribution error is a few percent. These differences vanish with
grid refinement.

For our next example, we choose the following expression for the density:

Example 4
Table 6
Exampl

Numbe

16� 16
32� 32
64� 64
128� 1
256� 2
512� 5

Grid co
q0ðx0; y0Þ ¼ C
exp �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � 0:5Þ2 þ ðy0 � 0:5Þ2

q� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � 0:7Þ2 þ ðy0 � 0:7Þ2

q : ð58Þ
Notice that this choice of the q0 is singular at x0 ¼ y0 ¼ 0:7, and J0=J ¼ 1=q0 (recall q ¼ 1) goes to zero there. In this case, the
deformation method cannot be used because its formulation requires a strictly positive Jacobian [29]. We have found numer-
ically that, when this condition is violated, the deformation method yields folded grids around the singular point. On the
other hand, the Monge–Kantorovich approach performs robustly. (In this case, we set x ¼ 0:5 as the Jacobi MG smoother
e 3, direct formulation

r of cells Error CPU time (s) Newton iterations GMRES iterations

1:80� 10�1 0.5 13 15
1:07� 10�1 1.6 11 16
3:92� 10�2 4.9 9 14

28 1:23� 10�2 19 8 15
56 3:44� 10�3 79 9 15
12 8:93� 10�4 317 9 15

nvergence study for the Monge–Kantorovich approach, using the prescribed density q0 of Example 2.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x′

y′

Fig. 10. Example 3, direct formulation. Monge–Kantorovich approach: New grid configuration using 64� 64 cells.
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damping parameter.) Results from a grid-convergence study are summarized in Table 7. First, one notices from the second
column of Table 7 that J0max=J0min, the ratio of the maximum to the minimum value of the Jacobian J0 ¼ 1=q0, increases sharply
with the total number of cells, being almost two orders of magnitude higher for the case of 256� 256 cells. [From Eq. (50),
J0min and J0max are proportional to the maximum and minimum volumes of cells formed by joining vertices with straight lines
and, as nx ¼ ny increases, the vertices nearest to the singularity get even closer to it.] Second, the equidistribution error scales
as n�2

x with grid refinement for coarse grids, but the scaling is lost as the grid is refined. The reason is that, while finer grids
attempt to resolve the singularity by placing more points around it, the resulting error grows faster than the available res-
olution (since the singularity is non-differentiable), and the n�2

x scaling of the equidistribution error is lost. However, the
computational time required for the convergence still scales optimally with the number of grid points (and is very similar
to that of Example 3). The number of Newton iterations required for convergence is always about 7, while the number of
GMRES iterations grows slightly from 10 to saturate at 16. This is an indication that this singular example is more challeng-
ing for the solver than previous examples, but still manageable. Fig. 11 shows the adapted grid for the case of 64� 64 cells
(left) and a detail near the singular point with x; y 2 ½0:6;0:8� (right).

As our last challenging example, we consider a density which corresponds to the luminosity of an image. We refer to this
case as Example 5. We choose the well-known image of Lena. See Fig. 12. This image has become very popular in the image
processing community because it contains a mixture of fine details and high and low contrast regions, which makes it suit-
able for testing imaging algorithms. We use it here with the purpose of testing our grid generation algorithm against a pre-
scribed density function with significant amount of structure. Areas of higher luminosity of the image correspond to larger
values of the density function and therefore to areas where the grid will be more refined. Areas of lower luminosity corre-
spond to areas where the grid will be less refined. Thus, when the grid is plotted with white lines against a black background,
a positive image is reproduced by the grid. Fig. 13 shows the new grid obtained with 64� 64 cells (white lines against a black
background). With this level of resolution, one can barely recognize the presence of Lena in the picture. Fig. 14 shows the
new grid obtained with 200� 200 cells. With this higher resolution, the picture is reproduced very well and many details
such as the plume can be recognized. The performance of the method is presented in Tables 8 and 9. Table 8 is obtained
by using a low resolution (200� 200 pixel) image of Lena, while Table 9 is obtained by the higher resolution image
Table 7
Example 4, direct formulation

Number of cells J0max=J0min Error CPU time (s) Newton iterations GMRES iterations

16� 16 137 1:07� 10�2 0.3 7 10
32� 32 356 3:04� 10�3 1 6 12
64� 64 1127 8:21� 10�4 4 7 13
128� 128 2829 2:10� 10�4 17.4 7 16
256� 256 8886 7:78� 10�5 70 7 16

Grid convergence study for the Monge–Kantorovich approach.
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Fig. 11. Example 4, direct formulation. Monge–Kantorovich approach: new grid configuration using 64� 64 cells (left); zoom in x; y 2 ½0:6; 0:8� (right).



Fig. 12. Example 5, direct formulation. q0ðx0; y0Þ prescribed according to the image of Lena.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x′

y′

Fig. 13. Example 5, direct formulation. Monge–Kantorovich approach: New grid configuration using 64� 64 cells for Lena.
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(512� 512 pixel) shown in Fig. 12. By comparing Tables 8 and 9, one can see that, for the high resolution image, more non-
linear iterations are required when the grid is refined. On the other hand, in terms of the number of linear iterations, the
method performs well in both cases and requires about one GMRES iteration for each Newton iteration. This is an indication
that the multigrid preconditioning is working properly. The fact that the high resolution image requires more Newton iter-
ations under grid refinement is not surprising considering that there are sharp gradients in the image which are now re-
solved better by the prescribed monitor function. Finally, we wish to emphasize that the initial grid is the identity
x0ðxÞ ¼ x, or U ¼ 0. In a time stepping context, the grid (i.e. U) from the previous time step would provide a good first guess
and require fewer Newton iterations.

6. Conclusions

We have presented an effective and robust approach for cell-area equidistribution in 2D. The new method, which is based
on Monge–Kantorovich optimization, is obtained by a minimization of the L2 norm of the grid displacement, constrained to
satisfy a given distribution of cell volumes.



Table 8
Example 5, direct formulation

Number of cells CPU time (s) Newton iterations GMRES iterations

32� 32 4.6 7 8
64� 64 20 8 9
128� 128 80 8 9
256� 256 374 8 13

Grid convergence study for the Monge–Kantorovich approach using a low resolution (200� 200 pixels) image of Lena.
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Example 5, direct formulation. Monge…Kantorovich approach: New grid con“guration using 2 -�2 - cells for Lena.

Table 9
Example 5, direct formulationNumber of cells

CPU time (s)Newton iterationsGMRES iterations

32�328
2

1013
64�64 27 1011

128�128

1411415
256�256

9792526

Grid convergence study for the Monge…Kantorovich approach using the high resolution (512�512 pixels) image of Lena.
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This method is based on a single, nonlinear, scalar equation, the Monge–Ampère equation. This equation has no free
parameters, and solutions are known to exist and be unique. We have solved the Monge–Ampère equation with a Jaco-
bian-Free Newton–Krylov approach. Due to the ellipticity of the linearized scalar equation, multigrid preconditioning can
be effectively used in order to deliver optimal convergence rates (with the computational time scaling linearly with the num-
ber of grid points).

We have compared the Monge–Kantorovich approach with the deformation method [29], showing that the Monge–Kant-
orovich approach produces better grids, since the approach is based on optimization, specifically minimizing the L2 norm of
the displacement of the grid points. The Monge–Kantorovich approach uses computational time and has equidistribution
error comparable to that of the deformation method. We have also shown that our method is much more robust, by success-
fully applying it to very challenging cases. The deformation method performs poorly or breaks down for such cases. Specif-
ically, we showed that for one challenging case the deformation method produced a folded grid while the Monge–
Kantorovich approach for the same resolution did not fold.

We have also shown that the Monge–Kantorovich-optimization-based equidistribution approach is consistent with a
grid-distortion-minimization-based equidistribution principle, which targets the minimization of the trace of the metric
tensor.

Finally, we point out that we have extended the 2D work presented here in a square to curved boundaries in 2D and to a
cube in 3D [37]. In light of these results, we wish to re-emphasize the issue of the lack of adjustable parameters in the
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Monge–Kantorovich variational formulation. In earlier variational grid generation approaches, suitable user-specified
weights were needed to ensure grid quality. While, in principle, grid quality should be considered in connection to a given
physical problem of interest [55], there are case studies in the literature which are so ill-posed that they produce poor-qual-
ity grids for most applications and mesh generators of interest. (See e.g. the Rogue’s Gallery in Ref. [56].) For such cases, it is
very convenient that the grid generation algorithm has some grid-quality measures ‘‘built-in”. (General application-indepen-
dent grid-quality measures are available in terms of local geometric properties of the grid mapping; see e.g. Ref. [8].) The
Monge–Kantorovich approach presented here features such ‘‘built-in” measures, as it minimizes grid-point displacement
(constrained to the equidistribution principle), and it features a connection with the minimization of grid distortion. It is
the lack of adjustable parameters (other than the monitor function to be equidistributed) and these ‘‘built-in” measures
of grid quality that make the Monge–Kantorovich approach so promising for robust grid adaptation.
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Appendix

In this Appendix, we outline a method of finding a map with a given Jacobian, and an adaptive grid generation method,
the deformation method, based on it. The main idea of this method was first introduced by Moser [30] for the volume ele-
ments on a Riemannian manifold without a boundary. Later, it was extended by Banayaga [57] and by Dacoragna and Moser
[31] to manifolds with a boundary. Liao and Anderson [29] suggested using this method to generate a grid with given volume
elements, and named the grid generation strategy the deformation method. More recently, Cho and Jun [58] have imple-
mented this method for shell finite element problems. More applications of the deformation method can be found in Refs.
[59–61].

The problem addressed in Ref. [29] requires the right hand side of Eq. (6) to be dependent only on the coordinates of the
initial grid. With the choice q ¼ 1 used in this paper, this is equivalent to solving the inverse problem, as discussed in Section
2.3. Therefore, we describe below the specific algorithm suggested by Liao and Anderson [29] in terms of the inverse formu-
lation and using the notation adopted in this paper. The aim is to construct xðx0; y0Þ that satisfies
det½rx�x0 ¼ ½x; y�x0 ¼ q0ðx0; y0Þ for all ðx; yÞ 2 X; ðA:1Þ
where the notation x0 indicates that the operators are acting on the x0 coordinates. The method of Ref. [29] unnecessarily
constrains the points of the computational boundary to be fixed under the mapping transformation. This is rather restrictive:
We require only that each of the four sides of the boundary map to its corresponding side, but otherwise allow the boundary
points to move tangential to the boundary. The algorithm outlined in Ref. [29] is as follows:

Step 1: Find a vector field v : X ! R2 such that
rx0 � vðx0; y0Þ ¼ q0ðx0; y0Þ � 1 � gðx0; y0Þ; ðx0; y0Þ 2 X; ðA:2Þ
v � n ¼ 0; ðx0; y0Þ 2 oX; ðA:3Þ
where n is the outward normal vector to the boundary.
Step 2: Solve the following equation for ~/ðt;x0Þ : ½0;1� � X ! X � R2,
d
dt
~/ðt;x0Þ ¼ vð~/ðt; x0ÞÞ

t þ ð1� tÞq0ð~/ðt;x0ÞÞ
¼ vt; ðA:4Þ

~/ðt ¼ 0;x0Þ ¼ x0: ðA:5Þ
where t is an artificial time parameter. Then, ~/ðt ¼ 1;x0Þ yields the final position obtained by the deformation of the initial
grid position ðx0; y0Þ, namely xðx0Þ ¼ ~/ðt ¼ 1;x0Þ. The fact that the required Jacobian is indeed obtained was originally proved
by Moser [30,31]. Liao and Anderson [29] construct a solution of Eq. (A.2) which has symmetry between x0 and y0 by using
v ¼ ðv1; v2Þ
v1ðx0; y0Þ ¼
1
2

Z x0

0
gðt; y0Þdt � hðx0Þ

Z 1

0
gðt; y0Þdt þ h0ðy0Þ

Z x0

0

Z 1

0
gðs; tÞdt ds

" #
; ðA:6Þ

v2ðx0; y0Þ ¼
1
2

Z y0

0
gðx0; tÞdt � hðy0Þ

Z 1

0
gðx0; tÞdt þ h0ðx0Þ

Z y0

0

Z 1

0
gðt; sÞdt ds

" #
; ðA:7Þ
where h 2 C1 is any function on ½0;1� such that
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hð0Þ ¼ h0ð0Þ ¼ h0ð1Þ ¼ 0; hð1Þ ¼ 1: ðA:8Þ
Notice that this velocity field is not irrotational.
The existence and uniqueness of the solution of the initial value problem in Eq. (A.4) has been proved [30,31]. Therefore,

the existence of a solution of the problem posed in (A.1) is clear. However, this solution is clearly not unique. In particular, it
depends on the function h of Eqs. (A.6)–(A.8).

We have found, by numerical simulations implementing different choices of the function h, that solutions corresponding
to different functions h do change the solution, but do not appreciably affect the accuracy of the Jacobian found, as long as
the boundary conditions (A.8) are satisfied.

With regard to the numerical implementation of the deformation method, we notice that the right hand side of Eq. (A.4)
involves the velocity field vð~/ðt;x0ÞÞwhich depends on the solution~/ðt;x0Þ. Thus, as ~/ðt; x0Þ evolves with time, the new veloc-
ity field vð~/ðt;x0ÞÞ must be updated in accordance with Eqs. (A.6) and (A.7). That is, the integrations in Eqs. (A.6) and (A.7)
have upper limits depending on ~/ðt;x0Þ. A direct implementation of this method, which re-evaluates the velocity integral as
needed, has been found impractical even for moderate grids. Instead, a better strategy is to evaluate the velocity integral
once, at the beginning of the calculation, on a reference grid in the domain ½0;1� � ½0;1�, and then interpolate (using cubic
splines) vð~/ðt;x0ÞÞ as necessary. The resulting algorithm has been found to be practical and very efficient.
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